A REVIEW PAPER ON ESTIMATING CAPACITY AND DELAY FOR SIGNALIZED ROADWAY WITH FREIGHT DELIVERIES

PRACHI PANDYA¹, DR. RAJESH GUJAR².

1. M. Tech Student (Infrastructure Engineering and Management), Dept. Of Civil Engg, PDPU, Gandhinagar, Gujarat - 382021
2. Assistant Professor, Department Of Civil Engineering, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat- 382007

Accepted Date: 03/04/2018; Published Date: 01/05/2018

Abstract: - Freight deliveries on signalized city road are recognized as lane obstructions throughout the duration of delivery. Traffic jamming associated with urban freight deliveries has gained increasing attention recently. As traffic engineers and planners are tasked with finding solutions to accomplish comprehensive demand more sustainably with restricted road capacity. Although trucks make up only a minor proportion of vehicular traffic, but they acquire a greater amount of the total cost of delays. Evolving conversation of policies to shift deliveries to off hours are proposed to mitigate the effects of on traffic jamming. This paper reviews on how the freight deliveries influence on road capacity and delay time.

Keywords: Capacity, Delay, Freight Deliveries, Signalized arterial

How to Cite This Article:
Prachi Pandya, IJPRET, 2018; Volume 6 (9): 40-44

Available Online at www.ijpret.com
INTRODUCTION

Freight deliveries on signalized city road are recognized as lane blocks throughout the duration of delivery. Traffic congestion related with urban freight deliveries has gained growing consideration in current years as traffic engineers and planners are tasked with finding solutions to accomplish wide-ranging demand more sustainably with restricted road capacity. Although trucks make up only a small percentage of vehicular traffic (6% of vehicles on urban freeways), they incur a greater proportion of the total cost of delays (26% of total cost) [1]. Emerging conversation of policies to shift deliveries to off hours are proposed to mitigate the effects of on traffic jamming.

A major amalgamation of the effects of heavy vehicles in the traffic stream was published in NCFRP Report [2]. The report summarizes the consequence of trucks on mid-block arterials speeds and presents enhanced methods for calculating truck passenger car equivalent factors for capacity analysis of signalized intersections. These methods do not account for blockages caused by parked trucks.

LITERATURE REVIEW

This study addresses the problem of urban freight deliveries in urban areas blocking traffic, which reduces street capacity and imposes delays on vehicles. Although urban freight is gaining increasing attention in the literature, there remains a need for methods to quantitatively assess the impact of delivery vehicles blocking lanes of traffic on the performance of signalized arterials. [3]

The present research addresses the problem of data collection, models and methods for urban freight transport demand analysis and the problems related to costs and the fact that few data are often accessible. Then, it becomes significant to examine the transferability of results in order to increase their use and to assess whether the obtained results is dependent on any particular condition, and whether the programs learnt in one city can be transferred to other cities. This result is related to the conclusion concerning the generalizability of the results of the surveys. That is, the models that regulate the amounts of goods attracted by zone and evaluations the origin-destination matrix of freights quantities, may be transferable between the two cities and, imminent to spread this reasonable analysis with other cities, could be perfectly generalizable and transferable models. [4]

This study uses latest disaggregate data of freight delivery patterns collected in the Manhattan area, which is rarely existing in freight studies, to discover the factors influencing delivery
vehicle on-street parking characteristics and drivers’ behaviour. A duration model is used to analyse delivery vehicle on-street parking duration, and a count data model is used to analyse the parking frequency of delivery tours. [5]

The paper defines the field of Freight Demand Management (FDM), and positions it as an important component of transportation policy and management. To create the rationale for FDM, the paper studies the effects of the agent interactions at the essential of supply chains, and categorizes the important role played by the receivers of supplies in defining when and how deliveries are made. The paper classifies the various modalities of FDM, and summarizes the real-life experiences of their implementation. To illustrate the potential of FDM, the paper analyses Receiver-Led Consolidation (RLC) programs. [6]

Freight transport in city areas is still not well understood and there is no methodology designed at the analysis and planning of such areas. To achieve urban sustainability, new models for the management of urban freight movements are required, in which local authorities play a proactive role. The aim of this paper is to contribute to lay the groundwork for designing policies to overcome the challenges involved in sustainable urban freight transport. [7]

This paper reviews freight forecasting models and current improvements and needs with respect to data and model progress. The study present a case study to suggest which models should be developed for the State of California in the US. [8]

Traffic congestion can significantly damage the effectiveness and performance of logistics systems. As transport infrastructure reaches its capacity, ensuring a smooth, reliable and cost-effective road freight operation is one of the main challenges faced by logistics managers. Between 2004-5 and 2007-8 the total delay to all journeys in England increased by 8.1%, followed by a decline of 10.5% in 2008-9. Even though this gives an overall decline of 3.3% from the 2004-5 baseline year, it is likely to be a provisional result of a latest decrease in vehicle traffic caused by demanding economic situation. [9]

This paper discusses the economic situations needed to move urban freight delivery traffic to the off-hours, and the usefulness of alternative strategies to nurture such move in competitive markets. Such strategies seem to be needed because the empirical evidence shows that in urban freight competitive markets freight road pricing may not be the greatest effective way to move truck traffic out of the congested hours. [10]

This article investigates the effects of the implementation of restrictions in vehicle movements associated with urban delivery processes on traffic. A inclusive Range of data (including land
use, delivery desires per type of service, traffic mix, traffic flows and capacities) are used within appropriate models to evaluate the traffic and environmental effects in Athens, Greece. The findings recommend that limiting delivery to specific types of businesses during rush hours can lead to optimistic traffic and environmental effects. [11]

This paper presents a new methodology for calculating passenger car equivalents at signalized intersections that is based on the delay concept. Distinct the frequently used headway-based methods that consider only the additional headway consumed by trucks, the delay-based approach fully considers the additional delay heavy vehicles cause on traffic stream. Delay-based passenger car equivalents are not constant, but depend on traffic volume, truck type and truck percentage. The data designated that the passenger car equivalents increase as the traffic volume and the percentage of heavy vehicles increase. [12]

REFERENCES